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A method is presented for the calculation of the temperature field of
continuous-wave lasers, given constant rhermophysical characteristics
for the active medium and that these are dependent on temperature.

We know that a portion of the pumping energy in a
laser is unavoidably dissipated as heat, resulting in
the heating of the working substance. The rise in the
temperature of the working substance leads to a pro-
nounced impairment of the laser characteristics [1—4,
etc. ], and in a number of cases it leads to the appear-
ance of substantial thermal stresses in the working
medium of the laser. The problem of cooling is there-
fore basic to the design of laser equipment.

Let us take the physical model of the process from
[5], since the processes of heat transfer exhibit con-
siderably greater inertia than the nonradiation-transi-
tion processes which cause the heating of the working
substance; the latter is treated as a specimen with in-
ternal heat sources distributed in a specific manner
throughout the entire volume. For a working substance
in the form of a circular cylinder of radius R under
identical conditions for the cooling of each element of
the side surface and the thermal insulation of the ends,
the problem with respect to the temperature field is
formulated by the following system of differential equa-
tions:
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§1. If the thermophysical characteristics are inde-
pendent of temperature, the solution of system I, given
the uniform distribution of the heat sources (Ki =
= const), is known [6]:
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As Fo — =, (5) changes into a relation which charac-
terizes the temperature distribution in the steady-state
regime:

i 2
9(r,)=%(l+ﬁ-—rf). (6)

Bearing in mind that the maximum temperature of
the process, as a rule, is specified in the calculation,
and that with uniform pumping the maximum tempera-
ture is developed at the center of the specimen, it
makes sense to present the dimensionless temperature
in the form

T(r) —Ty (7)
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Then (6) is written as
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From (6) we draw the obvious conclusion that the
profile of the temperature field and, consequently,
the temperature difference Afi,k between any two
points of the specimen, are independent of the cooling
conditions and are functions exclusively of the Kirpi-
chev number Ki. Indeed,

Ki
Aei,k =T(f’ii—rik). (9)

Consequently, it is enough to know the temperature of
a single point of the specimen to construct the cross-
sectional temperature field.

We can judge the relative nonuniformity of the tem-
perature field from the magnitude of the dimensionless
temperature 6(ry), which was introduced in accordance
with (7). It is interesting to note that the quantity 6{(ry)
is independent of the pumping level and is not associ-
ated with a specific specimen. This enables us to
speak of the thermal regime for lasers in general.

The relationship between the dimensionless tempera-
ture and the efficiency of cooling is shown in Fig. 1.
The Biot number in specific laser circuits may vary
over a wide range. Thus, under conditions of water
cooling for ruby specimens, the Biot number, as a
rule, does not exceed 2, while in the case of glass it
may go as high as 400. As follows from Fig. 1, for
ruby rods when Bi = 2 the possibilities of dropping the
temperature level have by no means been exhausted,
and on the basis of these considerations it is advisable
in a number of cases to resort to cooling by means of
a flow of low-boiling liquids (nitrogen, oxygen, Freon).
For glass materials, the available approaches under
conditions of water cooling when Bi > 20 make no sense
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(6(1) <0.1). This last statement is extremely impor-
tant, since it excludes—for glass materials—the
possibility of constructing cooling systems designed
for large liquid flow rates, high pressures, elevated
requirements imposed on hose strength, on packing
glands, etc., and it also excludes the possibility of
turning to cooling systems based on low-boiling liquids.
When the maximum temperature difference ATmax
between the center and the surface of the working sub-
stance is specified, we draw analogous conclusions on
examination of the relationship which follows from (6}:

o =2 (10)
Bi
where
o= LH~T (11)
ATmax

The maximum temperature and the maximum dif-
ference in temperatures between the center and the
surface of the laser rod can be determined if we know
the temperature at which the laser operation is still
possible. Stricter limitations on the magnitude of
ATmax will ensue from the requirement for greater
efficiency, greater monochromaticity, lower thresh-
old pumping power, preservation of optical uniformity
associated with the temperature gradient, and the re-
quirements with respect to the thermal stability of the
material, etc.

Thus, the calculation of the thermal regime for a
continuous-wave laser involves analysis of (6)—(11).
One of these may be a test equation—for example,
formula (9)—to coordinate the requirements with re-
spect to material thermal stability.

§2. The pumping-energy absorption density through
the volume of the substance is not generally constant.
However, in the thermal calculations this fact, as a
rule, is not considered. Introduction of correction fac-
tors for the assumption of uniformity frequently mark-
edly alters the results derived on the basis of the
formulas cited above. We will present the field for the
distribution of the density g(r;) of the absorbed pump-
ing energy by means of a polynomial in even powers of
ry

t
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or in dimensionless form

Ki(r) = E(_ 1)+ K, 1260, (18)
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The problem in this case is formulated by a system
of equations analogous to system I. We will obtain the
solution of this system for Ki = Ki(ry) in a form simi-
lar to (5). For this we will present the general solu-
tion of the problem as the sum of the solutions for two
special problems: the steady-state regime in the case
of nonuniform pumping V(r,) and the non-steady-state
regime when there are no heat sources Ulry, Fo). It is
not difficult to derive the analytical expression V(ry)
in the form
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The solution for Ulry, Fo) is known [6]:
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The general solution for the problem is obtained by
substituting (14) into (15):
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Assuming i = 1, we change the last expression into
(5). When i =2, we have
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Having determined the gradient for the temperature
field (16) in the steady-state regime, as in the case of
uniform pumping, we prove to our satisfaction that the
profile for the temperature field—given nonuniform
density of pumping-energy absorption—is independent
of the efficiency of the method by means of which the
heat is removed. On the basis of temperature mea-
surements at a single point of the specimen, this fact
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Fig. 2. Effect of nonuniformity of pumping energy
absorption field on the value of temperature drop
between the center and the surface of the working
substance (fractions AGpny): 1) for ay > 0; 2) for

as < 0.

also enables us to reproduce the entire temperature
profile.

We will present the maximum temperature differ-
ence (in dimensionless form), i.e., the temperature
difference AG?&{X between the center of the specimen
and its surface, in the form of the following sum:

AGpa= ABEM 1 ¢, (18)
where A0YAL, =Ki/4 is the maximum temperature dif-
ference for uniform heat release;

Ri= Y1t
i=1

is the Kirpichev number which corresponds to the
volume-averaged density of heat sources; ¢ isthe cor-
rection factor to account for the nonuniformity in the
distribution of the pumping through the volume of the
specimen, and this factor is determined from the re-

lationship
X Ki; 1
= E D=t —-—].
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From (18) we can calculate the magnitude of the maxi-
mum temperature gradient developed in the active
specimen and we can determine the magnitude of the
correction factor ¢ which should be introduced into the
calculation to account for the nonuniformity in the field

of AeUll, for various degrees of nonuniformity in the
field of pumping-energy absorption. We can judge the
nonuniformity of the field of pumping-energy absorp-
tion from the fact that ¢ = a;/a;. When a3 >0, the
pumping-energy density increases toward the center.
The index of temperature-field nonuniformity lies in
the range (1;»): a;/a; = © corresponds to a uniform
pumping-energy absorption density; @;/as =1 is the
maximum possible nonuniformity (the surface of sub-
stance does not absorb the pumping). As follows from
Fig. 2 {(curve 1), the difference in temperatures be-
tween the center and the surface for a;/a, = 1 exceeds
the corresponding temperature difference for uniform
pumping by a factor of L.5.

When a; <0, the density of the absorbed pumping
energy diminishes toward the center. The index of non-

- uniformity for the temperature field may vary in the

range (0;): ai/ay = < is a uniform absorption field;
ay/ay = 0 is the maximum nonuniformity (the pumping
energy does not reach the center). When ai/ay =0, the
magnitude of the correction factor ¢ attains its maxi-
mum value and is equal to 0.5, but its sign is opposite
to that of the case in which ay > 0 (Fig. 2, curve 2).

Thus, when ay >0 the nonuniformity is aggravated,
and when a3 < 0 the nonuniformity of the temperature
field is reduced in the steady-state regime. The vari-
ations in the temperature difference between the cen-
ter and the specimen surface lies in the range il.SAe}lr{li .
In the laser variants which are possible in practical
terms, the nonuniformity ¢ >5, so that we can take a
uniform field of pumping-energy absorption as the in-
itial field (with an accuracy of up to 5%) in calculations
for the steady-state thermal regime of the specimen.

The surface temperature for the working substance
is determined from (15):

Ki

As we can see, the surface temperature of the body is
independent of the degree of nonuniformity for the field
of absorbed pumping radiation, which should be in ac-
cord with the definition of the steady-state regime.

The effect of absorption nonuniformity on the maxi-
mum temperature developed at the rod axis can be

traced in the equation

§(~1>f+l( - )

of pumping~energy absorption. _e_°ut(0) -1 (21)
Figure 2 shows the temperature difference between guni(()) -0 [ 1 2 K
the center andthe surface forthe case i = 2 infractions ( " Bi |

Table 1

Effect of the Nonuniformity of the Field of Pumping-energy
ai/a; on the Ratio §°UH0)/6Uni(0) for Various Values of
Bii = 2, a3 >0)

a,‘a
Bi T
1 | 1| 2 | 5 10 15

0.01 1.002 ‘ 1,001 1,001 L oo 1.000 1.000

01 1.024 | 1,016 1.008 1.003 1.001 1.001

1.0 1167 |1 1.055 1.018 1.009 1.006
10.0 1.417 1,277 1.138 1.046 1.022 1.014
100-0 1.490 | 1,326 1,163 1,054 1.026 1.017

e 1 500 1,333 1,167 1.056 1.026 1.017
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Table 2
Effect of Nonuniformity in the Field of Pumping-energy
Absorption ai/a, on the Ratio.90ut(0)/94URY0) for Various
Values of Bi(i =2, ag <0)

a, ja,
B
' o Lot Jos | es | 1 | 2| s | w0 | 1
i .

0.01 0.997 0-998 { 0.998 1 0,999 | 0.999 i 1.000 ’ 1.000 ; 1.000 | 1.000

0.1 0.976 0.980 | 0.984 | 0.988 | 0.992 ! 0.995 |, 0.998 | 0,999 | 0.999

1.0 0.833 0.861 | 0.888 | 0917 | 0.944 | 0.967 | 0.985 | 0.992 | 0.995
10.0 0.583 0.653 | 0.722 | 0.792 | 0.861 | 0.917 | 0.962 | 0 980 | 0.987
100.0 0-510 0.582 | 0.673 | 0.755 | 0.837 ‘ 0.902 | 0.955 | 0.977 | 0.984

© 0-500 | 0.583 | 0.667 | 0.750 | 0.833| 0.9 0.955 | 0.976 | 0,984

In Table 1 (ay > 0) and in Table 2 (ay < 0) for the
case i = 2 we present the results from a numerical
evaluation of the ratio §0Uut(0)/9uni(0) for various val-
ues of the nonuniformity ¢ and for various Biot num-
bers.

It is natural that the results shown graphically in
Fig. 2 must be treated as limit values for the ratio
gout(0)/6uni(o), i.e., as Bi —,

As follows from the tables, the temperature at the
center may vary substantially as a function of pumping-
field profile. However, under actual conditions, when
@ > 5, we are quite justified in assuming for the calcu-
lations that the pumping field is uniform. Thus, for a
ruby when Bi = 2, a3 >0, and i =2, the error of such
an approximation is less than 3.7%.

§3. The foregoing is in need of refinement for the
case in which the thermophysical characteristics of
the working substance are functions of temperature.
The difficulty of dealing with this problem is associ-
ated with the nonlinearity of system I.

The differential heat-conduction equation for the
steady-stale regime can be linearized for the new vari-
able 6¢, which is introduced on the basis of the follow-
ing relationship:

8 1
G; = %— fxl(e)de, A o= le(e)de. (22)
0

1 .
0
Further, bearing in mind that
@) =1+k 04k 6°+.. (23)
can be replaced by the approximation
MO =14Fk08, (24)

where the coefficient kj is found from the variation of
(24) for the standard deviation, the relationship be-
tween 8 and 0f is easily established in the form

0= —I:—(V'l 42, %, 8, —1). (25)
A

The nonlinearity of the boundary condition of the
third kind is eliminated by the introduction of the coef-
ficient & according to the relation

1

L= —
k
14 20
+ 580

(26)

and its subsequent replacement by the approximate

value
so1_t (27)
4

Transformed system I for the steady-state regime
has the form

1.4 [ rli"_f_{.’}l] +Ki (=0, (28)
r dr1 drl )
d0¢(r) -
48]
df1 ry=0 (30)

The solution of system II is known and has a form anal-
ogous to (14). With consideration of (25), we find our
answer as

1
9(&) = —;;—

/ i Ki,

. 2 .
(V Lt Do g (1 )
i=1 ’

— 1). (31)

If we expand the radicand in series and limit ourselves
to the first two terms, (31) changes to the following:

P \ — ]} & 2‘ i (32)
9(")‘;( 1) 14[3(1+TBi —rf).

Assuming in the latter that € = 1, we derive formula
(14).

As follows from (32), we can assume in approxi-
mate terms as hefore that the temperature profile is
independent of the cooling conditions, and all of our
considerations with regard to the effect of nonuniform
density of absorbed pumping energy remain valid.
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Fig. 3. Coefficient € versus temperature for a num-

ber of active materials: 1) ruby, temperature range

200—-300° K; 2) ruby, 300-400; 3) CaWO,, 200-300;
4) neodymium glass, 200—300.
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Having approximated the results from the study of
the thermal conductivity as a function of temperature
in the range 200—-300° K for such active substances as
neodymium glass [7], ruby, and calcium tungstate [8],
activated by Nd™ ions by the above-described method,
for the ruby we find k) = —0.46, for the calcium tung-
state we find k) = —0.083, and for the glass we find
ka = 0.22. The error introduced into the calculation in
the derivation of (27), and the advisability of correct-
ing the results through consideration of the relation-
ship between the thermophysical characteristics of the
active substance and the temperature both follow from
the graph shown in Fig. 3. The averaging of & for the
calcium tungstate is quite permissible. In the case of
the ruby, such averaging may yield perceptible error.
However, under actual conditions the ruby rods oper-
ate under conditions only slightly hotter than the cool~
ing medium, and it is therefore not advisable to
congider the relationship between the thermophysical
characteristics and the temperature. For example, if
the overheating does not exceed 20°, in the tempera~
ture range 300—400° K (see Fig. 3, curve 2, § = 0.2)
for the ruby the averaging error with respect to ¢ is
less than 2.5%.

Since in the temperature region above 20° K, for
the working substances with the exception of glass, the
quantity ky is negative, and this causes the results of
the thermal-regime calculations for the specimens to
be slightly exaggerated. It is therefore necessary to
take into consideration the variability in the coefficient
of thermal conductivity only for operating temperatures
below 100° K in the case of the ruby and calcium tung-
state, since it is here that the thermal conductivity
exhibits a sharp rise. For neodymium glasses, with
temperatures substantially in excess of the cooling
medium, we also require refinement. The results can
be corrected by successive approximation with formu-
la (32). For very large Bi > 100, i.e., when the sur-
face temperature is virtually coincident with the
temperature of the cooling medium (boundary condi-
tions of the I-st kind), (82) changes into the exact sol-
ution of the nonlinear system I:

6(ry)

! / i‘ wr Kii i —
:_”:(l 1+ &, 2 (— 1) El;(l-—-r";) 1>.(33)

i=l

§4. The above-derived conclusions can be used in
certain cases for the development of pulse lasers.
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Here the basic calculational relationship (6) should be
used in. the form
Opu 2
oo - g1 g —n). @
where 5_pul is the change in the volume-averaged tem-
perature of the working substance during the pumping
period.

Results from the comparison of relationship (34)
with the formulas for the calculation of the tempera-
ture field of the working substance in the pulse laser
for the end of the cycle Fo = Fog show [5] that the rel-
ative error in the calculations of the temperatures for
the center of the working substance does not exceed
10% when Fog < 0.5 for values of Bi = 100. In compar-
ison with the center of the working substance, the
relative error in the determination of its surface
temperature is somewhat higher. As Fo¢ and Bi dim-
inish, the errors also become smaller.

NOTATION

Tc is the time between pumping pulses; Bi is the
Biot number; Fo is the Fourier number; Ki is the Kir-
pichev number. Other notations are taken from [6].
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